
How does a text to speech synthesizer developed? Used programming
languages, and procedures.

Description

Text-to-speech (TTS) synthesizers are a type of speech synthesis technology that converts written text
into spoken words. These systems are used in a variety of applications, such as virtual assistants,
accessibility tools, and automated voice response systems. In this article, we will explore how TTS
synthesizers are developed, the programming languages and tools that are commonly used, and the
procedures that are involved in creating a TTS system.

Overview of TTS Synthesizer Development

The development of a TTS system involves a combination of techniques from linguistics, computer
science, and digital signal processing. The goal of the TTS synthesizer is to create natural-sounding
speech that accurately reflects the meaning and intention of the written text. The process of developing
a TTS system can be broken down into several steps, including:

1. Text analysis: The input text is analyzed to extract linguistic features such as part of speech,
stress, intonation, and rhythm.

2. Phoneme generation: The linguistic features are converted into phonemes, which are the basic
units of speech sounds.

3. Prosody generation: The appropriate prosody is generated to make the synthesized speech
sound natural, including aspects such as pitch, duration, and loudness.

4. Waveform synthesis: The phoneme and prosody information is converted into an audio waveform
that can be played back to the user.

These steps can be implemented using various programming languages and tools, depending on the
specific requirements of the TTS system.

Programming Languages and Tools for TTS Development

There are several programming languages and tools that are commonly used in the development of
TTS synthesizers. These include:

1. Python: Python is a popular programming language for natural language processing (NLP) and
machine learning applications. Many TTS systems use Python libraries such as NLTK, spaCy,
and TensorFlow to perform text analysis, generate phonemes and prosody, and synthesize
speech.

2. Java: Java is another popular programming language for TTS development. The FreeTTS and
MaryTTS frameworks are written in Java and provide a range of TTS functionality, including text
analysis, phoneme and prosody generation, and waveform synthesis.

3. MATLAB: MATLAB is a numerical computing environment that is commonly used in digital signal

TECH ASSISTANT FOR BLIND FOUNDATION, INC
Note: This PDF is provided as a portable format of our content. The PDF's original copyright holder is Tech Assistant for 
Blind foundation, Inc. Any copying, redistribution, or rebranding is not allowed unless proper permission is obtained from 

us.

Page 1
Tech Assistant for Blind foundation, Inc. Contact Us: https://www.techassistantforblind.com/contact or by Email: 

info@techassistantforblind.com



processing applications. Many TTS systems use MATLAB to analyze speech data and generate
acoustic models that can be used to synthesize speech.

4. Praat: Praat is a software package for speech analysis and synthesis that is widely used in TTS
research. It provides a range of tools for analyzing speech data, generating phonetic
transcriptions, and synthesizing speech.

In addition to these programming languages and tools, TTS development also requires access to large
amounts of speech data and linguistic resources, as well as machine learning algorithms and neural
network models to produce high-quality synthesized speech.

Procedures for Developing a TTS System

The development of a TTS system typically follows a set of procedures, which may vary depending on
the specific requirements of the system. These procedures include:

1. Data Collection: The first step in TTS synthesis is to collect a large corpus of speech data,
which is used to train the machine learning models that will be used later in the process.

2. Linguistic Analysis: The input text is analyzed to extract linguistic features such as part of
speech, stress, intonation, and rhythm. This analysis may involve the use of NLP techniques
such as part-of-speech tagging, named entity recognition, and sentiment analysis.

3. Acoustic Modeling: Acoustic models are used to generate the phoneme and prosody
information that is needed to synthesize speech. These models can be created using machine
learning algorithms, such as hidden Markov models (HMMs), deep neural networks (DNNs), and
recurrent neural networks (RNNs).

4. Synthesis: The synthesized speech is generated using the phoneme and prosody information
from the previous step, as well as the acoustic models that have been created. The waveform
synthesis process may involve techniques such as concatenative synthesis, formant synthesis, or
unit selection synthesis.

5. Evaluation: The synthesized speech is evaluated for its naturalness, intelligibility, and prosody
accuracy. This evaluation may be done using subjective listening tests or objective measures
such as signal-to-noise ratio (SNR), mean opinion score (MOS), and perceptual evaluation of
speech quality (PESQ).

6. Refinement: Based on the results of the evaluation, the TTS system may be refined by adjusting
the acoustic models, the synthesis techniques, or the linguistic analysis algorithms.

7. Deployment: Once the TTS system has been developed and refined, it can be deployed in the
target application, such as a virtual assistant, a voice response system, or an accessibility tool.

In conclusion, TTS synthesizers are an important technology that requires expertise in linguistics,
computer science, and digital signal processing, as well as access to speech data and linguistic
resources. Programming languages and tools such as Python, Java, MATLAB, and Praat are
commonly used in TTS development, along with machine learning algorithms and neural network
models. By following a set of procedures such as data collection, linguistic analysis, acoustic modeling,
synthesis, evaluation, refinement, and deployment, it is possible to create high-quality TTS systems
that can be used in a variety of applications.

Date
01/05/2025
Date Created

TECH ASSISTANT FOR BLIND FOUNDATION, INC
Note: This PDF is provided as a portable format of our content. The PDF's original copyright holder is Tech Assistant for 
Blind foundation, Inc. Any copying, redistribution, or rebranding is not allowed unless proper permission is obtained from 

us.

Page 2
Tech Assistant for Blind foundation, Inc. Contact Us: https://www.techassistantforblind.com/contact or by Email: 

info@techassistantforblind.com



16/04/2023
Author
techassistantforblind_mf3z78

TECH ASSISTANT FOR BLIND FOUNDATION, INC
Note: This PDF is provided as a portable format of our content. The PDF's original copyright holder is Tech Assistant for 
Blind foundation, Inc. Any copying, redistribution, or rebranding is not allowed unless proper permission is obtained from 

us.

Page 3
Tech Assistant for Blind foundation, Inc. Contact Us: https://www.techassistantforblind.com/contact or by Email: 

info@techassistantforblind.com


